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ACCURACY OF THE GRADIENT METHOD IN HEAT TRANSFER 

V. K. Shchukin, A. A. Khalatov, 
and V. A. Filin 

UDC 536.24.083 

The gradient method is an experimental method of determining the local heat-transfer 
coefficient at the surface; the fundamental working formula is based on Fourier's law and 
takes the form 

/ 8t '~ 

t f  - -  tw 
The temperature gradient at the transfer surface (3t/3n)n=0 is found by determining the 

temperature distribution at the wall subject to boundary conditions of the first kind (Di- 
richlet problem), which themselves are defined by experiment. If there are heat losses and 
longitudinal heat leaks, these can be incorporated in the solution to the differential equa- 
tion along with the boundary conditions, which are specified at the edge of a longitudinal 
section of the body (axially symmetrical case). 

If the shape is complicated (nozzle, tip of a rocket, turbine blade~ etc.) or if the 
boundary conditions are complicated, then the temperature distribution may be determined 
numerically; the principles of the gradient method for such conditions have previously been 
given [I], together with experimental tests. 

The paper presents an evaluation of the relative error in the determination of heat- 
transfer coefficients in this way for a cylindrical surface under steady-state conditions, 
together with a numerical solution for the temperature distribution. The maximum value for 
the relative error is defined by 

,A ~ r  ~ = R ,  Art§ Atw (2) A ~  _ A),  + _ + _ _  , 

~ (or) t f - - t w  
/ r=R1 

which is used in estimating the individual components in (2); appropriate allowance has been 
made for the error in numerical solutions of the problem (by Runge's method), particularly 
from the replacement of (3t/~r)r=Rx by the ratio of finite differences (computer calcu!ation~, 
the errors in recording the boundary temperatures, errors due to effects of slots under ther- 
mocouples (in that case by computer calculation and electrothermal analogy techniques), and 
so on. A graph is given defining the relative error in surface temperature determination 
for various sizes of slot and various Biot numbers at the surface. 

In one of the experiments (Ref = 9.1oI0 ~, Bix = 0.244, tf I = 344~ an estimate was 
made of the relative error in the local heat-transfer coefficient; it was found that this 
error was 19% for those working conditions. 
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DEFINITION OF THE MASS-TRANSFERMECHANISM IN THE EXTRACTION 

AND DISSOLUTION OF A SOLID PHASE 

G. A. Aksel'rud, E. M. Semenishin, 
and E. G. Gordienko 

UDC 532.773-3:661.21 

A study has been made of the extraction of a solid substance from a spherical porous 
particle, in which there are two cases that differ in mechanism. In the first, the substance 
is extracted by physical dissolution of the solid phase in which case the region containing 
the soluble solid contracts continuously, while the part free from this substance steadily 
accumulates. In the second case, the extraction is based on chemical interaction with a re- 
agent which diffuses through the boundary layer within the porous particle to the reaction 
surface. 

Integral relationships for these processes have been used to derive a generalized ki- 

netic equation from 
6 2 

t _ , ~ ( i )  
T 1 + 6 2 ~ - + N  

It has proved possible to identify (i) with the kinetic curves by linearization, which 

readily yields Bi and e. 

If we introduce the new function y and new argument x, 

t 1 
|---- ~ 

T 1 - - % ,  x - -  Y _  2 % -  1 (2)  
% (1 -- %) 1 -- % 

then (i) becomes the linear equation 

where 

y= Ax+ B, (3) 

2 

1 Bi (4) 
A =  6 + 2  , B =  

I-~-~ B--~ I+--6 +--2 
e Bi 

The essence of the method of establishing the mechanism consists in processing the ini- 
tial kinetic equation @o = @o(t) for extraction from a monodisperse mixture of particles via 
(3), with determination of A and B, which then give the basic parameters Bi and e from 

2A 6A (5) 
Bi=-~-, e=I_(A+B) 

The following particular cases of (3) occur. 

i. We have y = x for e = =, Bi = =, A = i, B = 0, which means that the following equa- 

tion applies for the internal-diffusion mechanism: 

o, z5 

o 

L U 

. ~ f~ o / 

/o I �9 2 
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~ 1 7 6  I " o - - 4  
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Fig. i. Kinetic curves for 
extraction via various mech- 
anisms: i) alumina sinter 
with 15% NaOH, day = 3.8 mm, 
t ~ = 60=C; 2) pyrite ore 
with kerosene, day = 4 ram, 
t ~ = II0=C, 3) pyrite ore 
with tetrachloroethylene, 
day = 4 mm, t ~ = 80=C; 4) 
sulfur with tetrachloro- 
ethylene, dav= 13 mm, 
t ~ = 60~ 
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~ 2 , - 3 t 
I -- o% T 2% ----- T 

We have y § 0 for e << I, A = e/6 << i, B = (e/6).(2/Bi) ~: I, which means that the 

(6) 

. 

chemical interaction between phases is described by 

t 
I - - % -  ( 7 )  

T 

E q u a t i o n  (7) a p p l i e s  a l s o  f o r  a d i s s o l u t i o n  i n  the  d i f f u s i o n  r e g i o n .  

The experiments on Bi and ~ were performed with the following systems: pyrite ore with 
tetrachloroethylene, pyrite ore with kerosene, and alumina sinter with 15% NaOH solution; 
those on the dissolution kinetics were performed with spherical sulfur particles in tetra- 
chloroethylene (Fig. I). 

The measurements were fitted to a relationship of the y = f(x) form, which showed that 
all these processes involve mechanisms close to the internal diffusion type; on the other 
hand, the last case (pure dissolution) is described by the external-diffusion mechanism. 

NOTATION 

r dimensionless particle radius; t, current time; T, total extraction time; Bi, Biot 
number; s, criterion defining the kinetics. 

Dep. 3662-76, September 6, 1976o 
Original article submitted January 19, 1976. 

INTERNAL CHARACTERISTICS OF LOW-PRESSURE BOILING 

V. V. Dobrotvortsev UDC 532.65:536.423.1 

Experimental data are presented from high-speed photography of boiling in water and 
ethanol in large volumes at pressures of 0.0093-0.58 bar; the hot surface was provided by a 
Nichrome wire of diameter 0.5 mm. This wire was heated by an alternating current. The films 
show directly that there are considerable statistical differences between the cases. Amethod 
is given for calculating the mean values of the internal characteristics. The effects of the 
saturation pressure and specific heat flux on the mean internal characteristics indicate that 
the detachment diameter, growth time, and lag all increase as the pressure is reduced, while 
the concentration of nucleation centers, the nucleation frequency at such centers, the vapor 
formation rate, and the heat flux transported by the bubbles all fall. Similarly, the con- 
centration of active centers, the nucleation frequency, the vapor formation rate, and the 
heat flux transported by the bubbles all increase with the heat flux, vfnereas the detachment 
diameter, growth time, and lag all fall. 

An analysis is also presented for the growth and detachment conditions for single bub- 
bles on this type of thin horizontal cylindrical heater. A characteristic feature of bubble 
growth is that a bubble reaches its maximum size before detachment, and this size is deter- 
mined only by the excess enthalpy of the liquid thermal boundary layer present before the 
vapor bubble appears. The following formula has been derived for the maximum radius of the 
vapor bubble growing on such a heater: 

Rmax ~[0 .56~(~ ~ 6t)Ja] 0-~ " 

This formula has been used in estimating the time spent by the bubble on the heater surface. 
The following relationship has been derived for the bubble growth: 

R(~) = R m d ~ i l -  8 " " 

T h i s  r e l a t i o n s h i p  i s  d e r i v e d  f rom a s o l u t i o n  f o r  t h e  c o o l i n g  o f  an  u n b o u n d e d  t h i n - w a l l e d  
plate. 
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NOTATION 

Rmax, maximum vapor-bubble radius; R, current vapor-bubble radius; T, time; ~t, thick- 
ness of the thermal boundary layer; dh, heater diameter; Ja, Jacobs criterion; Fo, Fourier 
number. 

Dep. 3660-76, July 30, 1976. 
Original article submitted April 30, 1976. 

CALCULATION OF TURBULENT VISCOSITY AND FLOW FOR A PLANAR CHANNEL 

M. S. Povarnitsyn UDC 532. 542.4 

The system of Reynolds equations may be closed by means of the transport equation for 
the total viscosity K = (v + vt)~ -I [i], where ~ and ~t are the molecular and turbulent vis- 
cosities. This equation has been applied to a pipe for the entire range in the transverse 
coordinate y. A system of equations is written for the flow of an incompressible liquid on 
the assumption that longitudinal diffusion and transverse pressure variation can be neglected. 

The developed flow is then considered, with the momentum equation taking the form 

du+/dy+ = (1 - -  y+r~_ l ) K -1, ( 1 )  

and the equation for K becoming closed: 

d'ZK2/eY~ -k- 2A (1 - -  K-~)(I - -  y+y$1)  _ 2B,K (K - -  l ) / yS /  (y+) = 0; ( 2 )  

here y+ = yu*/v; Y+ = hu*/v; u + = u/u~; u* is the dynamic velocity; and 2h is the channel 
width. Function f = 1 for y+ < 4 and y+ > 26 (for 4 < y+ <26, see Table i), while A = 1.23 
and BI = 12 are universal empirical constants. 

The boundary conditions for (2) are the following: K(0) = i, dK(Y+)/dy+ = 0; when K 
has been determined, the distribution of the velocity and of the coefficient of friction 
X = 8(U+v )-2 can be derived from (i). Near the wall (y+ ~< 3), the following solution is 

derived (x = /~y+): 

1 ,+o -cosx)-5cosx . . . . .  

K =  1 + - ~  L\ x~ x 

The solution far from the wall (y+ >~ 8-10) has been constructed subject to the condition I -- 
K -I ~ i; (2) has also been solved numerically. The numerical calculations confirm the ap- 
proximate analytical ones. The calculated K have been compared with the Observed ones for 
tubes and channels. The agreement with experiment is good throughout the range 0 < y+ < y+ 
provided that the mixing length L differs somewhat from the values predicted by a linear re- 
lationship in the region where the production and dissipation of turbulent energy are larg- 

i/2 est (4 4�9 y+ ~< 26), the linear relation being L = f y+; Table i gives values for f(y+): 

TABLE i 

I 4 "6 I0 14 ~8 22 26 Y+ 

0,643 0,509 0,497 0,547 0,608 0,688 0,735 
�9 f 

Good agreement with experiment is obtained with the distribution of U + for 0 < y+ < 103; 
the resistance coefficient X(Re) agrees with experiment for an annular channel (Du/Dz = 1.33) 
[2] but the values for tubes are somewhat higher than those found by Nikuradze. 
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REYNOLDS METHOD APPLIED TO DETERMINATION OF THE 

ONSET OF LAMINAR FLOW 

A. A. Solov'ev UDC 532.542.4 

~In recent years, there has been considerable interest in reversetransition to laminar 
flow(laminarization) [i]. Thepaper discusses the scope for using an energy method, which 
differs fromthe~common Orr--K~rm~n formulation in that Reynolds' original formulation is 
employed [2].; An example of a flow along the x direction is considered for a viscous incom- 
pressible liquid subject to a pressure and lying between parallel plates (y = • the mean 
motion is considered as plane-parallel, while the fluctuating motion is considered as planar~ 
The liquid adheres to the walls, and the derivatives of the velocity with respect to the co- 
ordinates are zero there. The fluctuating motion is subject to the condition of periodicity 
in x (% is the period) and to the conditions that the fluctuating stresses are symmetrical. 
The working equation is 

b o 3o 

i' i 
- - b o  - -bo  

where q and 8 are the amplitudes of the pulsations, dots denoting derivatives with respect to 
y, I = 2w/% is the wave number of the pulsation, and ~ = O/p is the viscosity. The deriva- 
tive dv/dy is derived not from Poiseuille's law, but from the law (Uma x --v)/v, = 2.5 in bo/y. 
The right side of (i) is integrated by parts subject to the symmetry condition; we obtain 

where 

E 2 

5v.bo E~ (2)  
v E z 

bo 
[D((z ~- + ~2) + 21 ~ ( a : +  ~2) + &~ + ~2} ay 

- - b  o 

bo [i 

E~-- 200 , f 7  z(~ d~)ay 
- - bo  - - b  o 

, (3) 

In accordance with the boundary conditions, 

o~ --asinp-}-asin 3p, 

where p = wy/2be; integration of (3) gives 

one gets for the pulsation amplitudes that 

a 

~ = a sin 20 + ~ - s i n  4p, 

E2 = b-~- 13'25L~ + 36Le + 162}, 

w h e r e  L = ( 2 b o / w ) ~ .  

After transferring by standard means from the dynamic velocity v, to the mean speed u 
one gets 

2bou 37.4 {L ~ + IlL ~ +50} 
R e - -  - -  - -  

v L 

The min imum i s  d e f i n e d  b y  Lmin = 1 . 6 2 ,  w h i c h  g i v e s  Remi n = 2 0 0 0 ;  s i m i l a r  c a l c u l a t i o n s  c a n  b e  
performed for other types of flow. 

I. 
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. O. Reynolds, "The dynamic theory of motion for an incompressible liquid: definition of 
a criterion," in: Turbulence Problems [Russian translation], ONTI, Moscow--Lenlngrad 
(1936), p. 183. 
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MEASUREMENT OF HEAT-TRANSFER COEFFICIENTS FOR STEAM BUBBLES 

RISING IN SUPERHEATED WATER 

E. D. Kurtsman UDC 536. 248.2 

Little has been published on heat-transfer coefficients for steam bubbles growing in 
water; the usual value employed is ~ = 18.5,i0 s W/(m2,deg), which was derived in [i] as the 
means of values derived for six bubbles of volumes up to 200 mm ~. 

A special device [2, 3] has been used to measure a for 15 large bubbles (volumes up to 
50 cm s) rising in boiling water at Po = i bar. Motlon-plcture photography and temperature 
measurement have been used to calculate the instantaneous heat-transfer coefficient aj(T), 
where J is the number of the bubble and T is time. Averaging with respect to r then gives 
the mean values aj, and then averaging with respect to j gives the mean result for all bub- 
bles ~ E (~j) = 57.10 s W/(m2.deg). The data were processed by computer on the basis of spec- 
tral analysis and smoothing. 

The data indicate that the different modes of flow cause the values for ~j to differ 
considerably, as do the values of a for a given bubble at different T. Similar observations 
have been made previously [i]. It is found that the result ~ = 57.i0 s as the standard devia- 
tion A(~) = 39-i0 s, i.e., the two are of the same order of magnitude, and this standard de- 
viation is due not to instrumental errors, but to differences in the aj(T) curves. 

This indicates that it is insufficient to represent the heat-transfer data for bubbles 
growing in boiling water simply by means of an average value ~, since bubbles must be dif- 
ferentiated into classes in accordance with the growth parameters. 

This means that the result ~ = 57.i0 s should not be considered as replacing the result 
= 18.5.10 s from [I], but merely as supplementing it (on the basis of the above standard 

deviation) for the case of large bubbles growing in a rapidly boiling liquid. 

The author is indebted to B. V. ~rshler and L. Ya. Suvorov for valuable discussions, and 
to L. I. Geiman for assistance in the laborious measurements. 
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DETERMINATION OF THE THERMOPHYSICAL CHARACTERISTICS OF 

SUBSTANCES BY THE EFFECTIVE-PARAMETER METHOD IN 

TEMPERATURE-TIME INTERVAL TECHNIQUES 

N. N. Medvedev UDC 536.2.083 

The effective-parameter method, which allows one to calculate thermophysical character- 
istics from workingtables employed in primary methods, while retaining conditions appropri- 
ate to those of the experiments used in the temperature-- time interval technique, is described. 
The effective-parameter method allows one to determine thermophysical characteristics 
of corrosive substances, resins, electrolytes, volatile liquids, and solid insulators, 
as well as of rocks and materials of high thermal conductivity, on specimens of small thick- 
ness. The method is based on analysis of the restricted applicability of additivity for 
thermal resistances under nonstationary conditions. 

The theory of the method includes a correction for the contact thermal resistance. 

Dep. 3670-76, July 26, 1976. 
Original article submitted February 6, 1976. 

PARTICLE-SIZE DISPERSION PREDICTION FOR SOLID PARTICLES 

OF CONDENSATION ORIGIN 

A. G. Sutugin and E. I. Kottsev UDC 536.436.4:541.128 

The paper presents a method of the calculating particle-size dispersion for the case 
where the specific surface of the deposited product is determined by the capacity of the par- 
ticles to fuse on deposition. It is assumed that the particles are formed together as the 
temperature is reduced. The particle sizes increase with time, while the falling tempera- 
ture means that the particles gradually lose the capacity to fuse together, so the mode of 
coagulation tends to alter, since particle collision ultimately results only in clumps held 
together by adhesive forces, with no corresponding change in particle size. The temperature 
corresponding to this point can be derived by measuring the stability of the powder under 
heating. Such measurements give the maximum specific surface that can persist at a given 
temperature, Smax(T ) . 

Numerical solution of the equations for condensation and coagulation have been used in 
determining the behavior of the particle size and the specific surface as a function of time: 

S~(O) = AO-2"5(%a/p~m), (i) 

where A is the coefficient dependent on the Gamaker constant, 0 is dimensionless time, p is 
density, and m is molecular mass. 

The relationship between 9 and the physical time is given for coagulation in a turbulent 
jet by 

0=[2.66 do/uo]-iK (I, 1) x~w, (2) 

where w is the dilution of the hot mixture by cooling gas, x~ is the initial concentration 
of the vapor molecules, uo is the flow speed, do is the nozzle diameter, and K(I, I) is a 
coefficient for the collisional frequency of the vapor molecules. Since w and T are known 
as functions of t, one can construct curves for Smax(e ) and Sk(8)~ whose intersection defines 
the desired specific surface. The method can be applied to existing data on the condensation 
of silver and molybdenum trioxide vapors. In the case of MoOs, the method systematically 
predicts S too large by factors of 2-3. As regards silver, it was found that the tempera- 
ture cannot be reduced sufficiently rapidly for coagulation to be inhibited, i.e., the 
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Smmx(0) and Sk(8) curves do not intersect. 
to determine the necessary equipment size. 

Dep. 3671-76, July 26, 1976. 
Original article submitted May 25, 1974. 

This illustrates the scope for using the method 

MEASUREMENT OF ELECTRICAL POTENTIALS IN 

ELECTROHYDRODYNAMIC FLOWS 

V. A. Bubnov, A. A. Solov'ev, 
and V. A. Skorobogatov 

UDC 534.22:536.24.01 

Recent researches have placed much emphasis on the interaction between hydrodynamic and 
acoustic motions [i], and therefore measurements have been made on the Debye effect. A de- 
scription is given of the experiments and of the method of measuring the electrical potentials 
arising in solutions of electrolytes in the presence of ultrasonic waves; the potentials were 
measured in standing waves. Parasitic interference was provided by a high-frequency oscilla- 
tor. The probe signal was amplitude-modulated by the signal due to the Debye effect. The 
modulation amplitude A# = ~max- ~min was measured, and the ratio of this quantity to the 
amplitude unit W for the particle vibration velocity was calculated. The latter was derived 
from the measured generator voltage. The ultrasound frequency was 1.7 MHz. The probes gave 
no signal in nonpolar liquid. The potentials given by three aqueous solutions (KCI, NaCI, 
and MgS04) are shown in Fig. i. Only KCI +solution satisfied Debye's theory, which indicates 
that the effect should be independent of the concentration at low concentrations. The fall 
in the apparent mass difference between the anions and cations at high concentrations should 
reduce the effect which appears to occur for NaCI solution. The behavior of MgSO4 solution 
may be explained in terms of a diffusion correction, which makes an increasing contribution 
on account of the difference in ionic mobilities. On the whole, the results indicate that 
there are deviations from Debye's theory at high concentrations. 

Fo ~ ~ l + 

+i o - I  
I , , - - 2  

t ~ m - - 3  , 

0 Z 3 0 M 

Fig. i. Amplitude of the electrical potential 
K = A@/w in UV/cm/sec as a function of salt con- 
centration M for aqueous electrolyte solutions: 
i) KCI; 2) NaCI; 3) MgS04. 
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ANALYSIS OF INHOMOGENEOUS SEMICONDUCTOR STRUCTURES BY 

METHODS OF NONEQUILIBRIUM THERMODYNAMICS 

G. M. Balim L~DC 621. 382 

An attempt is made to show that known methods of the thermodynamics of irreversible pro- 
cesses (the Onsager theory) may be used, under certain assumptions, for the analysis of com- 
plex semiconductor equipment with a certain number of p--n junctions. On the basis of the 
Second Law of Thermodynamics and the assumption that the semiconductor consists of a set of 
fixed lattice points and mobile holes and electrons, an expression is obtained for the rate 
of growth of entropy: 

T O = - -  - -  ~ g r a d T +  l---Z~ograd(kTln no., ~ , _ _ _  ~ r Po ~ + 
T q ~e,,  .[ NvJ  

w w 

- E E( I E( ) - -  Jo grad % - -  Je gr~  ~e --  kT - -  kT In + q~: Ynv --  kT + kT In ~ - -  q~ yp~. 

e :  I ~ 0  v=0 

Here Jq is the generalized heat flow; Jno, o, no, and Po are the current densities and hole 
and elect~on concentrations caused by the fields of space charges in the structure (background 
values); Jt and ~o are the total density of the background current and electrical potential 
at each point of space; and ~nv, ~pv, nv, Pv, ~e, and @e are values of the current density, 
charge-carrier concentration, and electrical potential caused by the corresponding p--n junc- 
tion (v) and electrode (e). It is assumed that the structure contains w n--p junctions and 
m electrodes, one of which (numbered below m) has a fixed potential (is grounded). The rest 
of the notation is conventional. 

In this representation, the number of vector flows and thermodynamic forces for the 
transfer equation can be chosen to agree with the number of electrodes and p--n junctions. 
The kinetic coefficients are determined on the assumption that the electron and hole mobili- 
ties are matrix values in the field of these forces. 

It is shown that the method outlined can be used to derive generalized Ebers--Moll equa- 
tions for structures of any complexity, taking into account the bulk resistance of the region 
and leakage at p--n junctions. Examples of the formulation of such equations are given. 

Dep. 3770-76, September 30, 1976. 
Original article submitted August 26, 1969. 
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SLOW NONISOTHERMAL MOTION OF A NONLINEARLY VISCOPLASTIC 

MEDIUM IN A CIRCULAR CYLINDRICAL TUBE 

R. M. Sattarov and R. M. Mamedov UDC 532.5:532.135 

The effect of the heat of internal friction on the hydraulic characteristic of laminar 
motion of a nonlinearlyviscoplastic medium in a circular tube, taking into account the 
change in plastic viscosity and limiting shear stress with temperature, is considered. 

The solution reduces to a system of nonlinear differential equations: 

i.p . dO, o, o < p  <po, (1)  

1 1 
d0~ \ 

! d --~o" )+Np [(p09 '~--Po ~ I ~=0,  P o < p < I  (2) 
p " dp P , 

1 1 

au~ aP~" [(po~) ~ - p o  ~ ]~ (3 )  
dp 2l~ w 

with corresponding boundary conditions. Here N = (APR2/2~)2/~Tw~w; e i is the dimensionless 
temperature; AP/I is the pressure drop; R is the tube radius; 0 is the dimensionless radius; 
Po is the dimensionless core radius; n is the nonlinearity parameter; ~w is the plastic vis- 
cosity at the wall temperature Tw; U z is the longitudinal velocity; and ~ is the thermal con- 
ductivity. 

The system (i), (2) is solved using the comparison theorem, which involves finding up- 
per and lower bounds for the differential equations, between which the true solution must 
lie. Rough calculations show that the relative error between the upper and lower solutions 
depends on the parameters N, Po, and n; increase in N leads to increase in the error and in- 
crease in Po and n, to reduction in the error. However, in the present investigation the 
arithmetic mean of the upper and lower solutions is used, since this solution differs from 
the accurate solution for a particular case (a Newtonian medium) by not more than 3%. 

Calculations show that increase in the limiting shear stress leads to reduction in the 
effect of the temperature dependence of the viscosity and limiting shear stress on the tem- 
perature, flow core, and flow rate. With increase in the nonlinearity parameter n, the rate 
of reduction in these values sharply increases. 

Comparison of the results with those obtained for the analogous problem with constant 
rheological parameters shows that in the case of temperature-dependent rheological coeffi- 
cients there is a marked increase both in the temperature of the viscoplastic medium in the 
region of the quasisolid core and in the flow rate; with rise in n, the difference between 

the two sets of results decreases. 

Dep. 3661-76, August 30, 1976. 
Original article submitted May 19, 1976. 
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SOLUTION OF THERMAL-BALANCE EQUATIONS FOR MULTIPASS 

HEAT EXCHANGERS 

L. B. Prigozhin UDC 536.27 

An analytic solution is obtained for the system of thermal balance equations for a mul- 
tipass heat exchanger with one path in the body and an arbitrary number of tube passes 

N 

dx N Oi - -  NT , 

d0i b ( T - - 0 i ) ,  i = 1 ,  N. 
d-7 = ( -  i)~ " 7  . . . .  

T(O) = T s ;  O,(1) =e s, 
~ . . �9 . . , �9 . . . .  . . . 

02/(0) = 02~_~ (0); 0,S+ ~ (1) = 02~ (1), 
�9 , ~ . . . . . ~ . . �9 . �9 �9 . . ~ 

N 
0 < / < ~  

2 

Here N is the number of tube passes; T and 0 i are the heat-carrier temperatures in the in- 
tertube space and in the i-th tube pass; a and b are dimensionless coefficients; and the sub- 
scripts s and f denote the starting and final values of the temperature. 

An explicit expression is given for the temperature efficiency factor (TEF) of the heat 
exchanger: (Tf -- Ts)/(0 s -- Ts) = ~(a, b, N) for odd and even N; check calculations for mul- 
tipass heat exchangers are considerably simpler using this equation than by existing itera- 
tire methods. According to a note by R. Bauman, 

lim ~(a, b, N ) = ~ ( a ,  b), 

where r b) is the TEF of a heat exchanger with crossover flow for total mixing of each 
heat carrier in any transverse current line of the section. When N is even, @(a, b, N) is 
close to r b) for all a and b at fairly low values of N. For odd N, the convergence is 
not uniform with respect to a and b and, even at high values of N, there are values of the 
parameters at which the use of r b) instead of @(a, b, N) to simplify the calculation 
is impossible (Fig. i). 

~ , , V = 4  ! ' 

:~i i i 

KO _ _  

' " - 2 7  

~ 2  I 

-, '0 

I / / / / ~ ~  9 : :  

- I  0 ." 2 

K ~ 
! : t  , 

i ' 7 , / :  . 

i 

0 
--V " ~1 

- ;  o l 2 to~ 

Fig. i. TEF of heat exchangers with one pass in body and 
N tube passes. The dependence of @ = @(a, xa, N) on a is 
shown for various balues of x = b/a (shown above the curves)~ 
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NUMERICAL SOLUTION OF NONLINEAR BOUNDARY-VALUE PROBLEMS 

OF THERMAL AND ELECTRICAL TRANSFER IN MULTILAYER SYSTEMS 

T. S. Tsulaya UDC 5 1 7 . 9 + 5 3 6 . 2 + 6 2 1 . 3 6 2  

The transfer and Interconverslon of heat and electricity In multllayer two-blade sys- 
tems is described mathematically by a nonlinear system of one-dimenslonal differential equa- 
tions of parabolic type: 

OTs v O / or,,v ) OTs ,: 2 I 
' - - -  - - T ~ , ~ I ~ , ~  ( 1 )  Cs.vVs,v 0t 0X ~ks'u---~x , J - ' ~ X  '" "t-ps'vJs'U-Jr" q' 'v' 

/ X s - l < x < X s ;  s-----l, 2 . . . . .  M; X o = 0 ;  X ~ = l ;  0 < / < ~ ;  v = i ,  2, 

with initial and boundary conditions (at the ends of the system) 
Ts,~ (x, 0) = ~s,v (x); '[ 

r ,~(o,  0 --,l,~(t), T...v(l, t) = wry(l)/ ( 2 )  

and matching conditions at points of contact of different layers (x = Xs, s = I, 2, ..., M- 
i; v = i, 2) 

rs,v(Xs, t ) =  rs+x,~,(Xs, t); ) 
Or~+, ~ , [ (3) 

['--ks,v Ox =- ~Zs,vJs,vTs,v = ~ %+l,vJs+l,vTs+l,v, Xs 
: , X  s ' ' OX 

E s = E s t  ~Es,~:=L i(ne)s,l J 

and the internal electrical resistance is 

The subscripts s and v give the number of the layer and the blade, respectively; X s is the 
coordinate at the edge of the layer s; Ts, v Is the temperature; ks,v La = Xs,v is the thermal 
conductivity; LT~ .. is the Thomson coefficient; La~ v the Seebeck coefficient; the specific 
heat Cs,v, electrical resistivity 0s,v, and denslty'ys, v are functions of the temperature, 

�9 2 

and are often represented in the form of polynomials in Ts,v~ 0s,vJs,v is the change in Joule 
heat liberated in the layer when an electric current Is, v = IJs,vlSs,v flows in it (Ss,v is 
the cross-sectional area of the layer); a~,vJs,vTs, v is the Peltler heat; qs,v is an external 
heat source (sink); and L Is the length of each of the two blades. 

The electrical current density Js,v is defined In terms of Ts,v using the relation (the 
layers in each blade are both electrically and thermally in series; the two blades are elec- 
trically in series but thermally in parallel) 

$,g, ~ .D  

where the thermo-emf appearing in  the system because of the Seebeck e f fec t  i s  

TX~'1'x Y (T) dT--(nE)s, ~ " ~s,2(T) dT (5) 
TX ~2 

x. x s 

§ R [ 1 I o-'T'dxl 
" ' "  S~ 1 ; $5o "~-1 

(6) 

R L is the external load in the circuit; (nE) s v is the number of identical elementary trans- 
' i formers in the layer which are electrically in series and thermally in paralle . 

The coefficients c, y, k, rJ, P, and ~J have discontinuities of the first kind at the 
edges of the layers; for a J ~ 0 [see Eq. (3)] the conductive heat flow (--X~T/~x) is also dis- 
continuous at these points. The solution is sought In the class of plecewise-smooth func- 

tions. 

For the first boundary-value problem (1)-(3) a homogeneous, conservative, and monotonic 
purely implicit difference scheme of continuous calculation is constructed. 

The results of machine calculation on an M-222 computer confirm that the difference 
scheme developed is absolutely stable, converges sufficiently rapidly, guarantees an accuracy 
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0(h = + r), and allows the investigation of both steady and unsteady operation of the appro- 
priate equipment (electrical generators, refrigeration and heating pumps, etc.). 

The calculation scheme is described (the program -- in Ta-28 input language -- is included 
in Gosfond, the State Bank of Algorithms and Programs) and results are given for a specific 
seven-layer system of two blades. In the special one-layer case, this system reduces to the 
known example and reproduces a number of literature data. 
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SOLUTION OF STEADY HEAT-CONDUCTION PROBLEMS FOR SEMIPLANES 

BY PAIRED INTEGRAL EQUATIONS 

B. A. Vasil'ev UDC 517.946 

In [i, 2] paired integral equations were used to solve problems of diffraction theory. 
Additional use of the factorization method allows the corresponding problems of heat-conduc- 
tion theory to be considered. The problem reduces to solving the paired integral equations 

i M ( v )  c o s v x d v = : l .  O < x < a ,  

o ( l )  

f M  (v)(v + h)ces ~xdv = O, a < x < ~ ,  
0 

where M(~) is a real function; h and a are positive constants. 

By factorization of the piecewise-holomorphic function 

in the form [3] 

h --  x', Rev>~O. 

6 ( v ) =  [ h - - v ,  R e v G O  

G (v) = G+ (v) G_ (v) 

it is possible to obtain a Fredholm integral equation of the second kind for the auxiliary 
function W(t): 

where 

r {1 

a ~ t  < ~ ,  

i 
'~ G-~ Cv) exp (-- ivl) dr, K (0 -- 2n ~ G_ (v) 

- - ~ - - i 8  

t > O ,  8 > 0 .  

The use of Eq. (3) is convenient at large values of the heat-transfer parameter. 
small values was considered in [4, 5]. 

(2) 

(3) 

The case of 
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ITERATIVE METHOD OF OPTIMAL LINEARIZATION 

R. A. Tsesis UDC 536.2.01 

As is known (see[l, 4], for example), existing approximate analytic methods of solving 
nonlinear heat-conduction problems have no great advantage over methods of linearization. 

The general idea of linearization is to replace the initial nonlinear problem by a lin- 
ear problem in such a way that the solution of the linear problem is in some sense close to 
the solution of the nonlinear problem. The choice of a specific linear problem to provide 
a good approximation is largely subjective. 

The paper proposes an iterative method of linearizatlon of nonlinear heat-conduction 
problems, which generalizes and refines the method of optimal linearization [2]. The prin- 
ciple underlying the method is illustrated by considering problems with nonlinearity of the 
second kind (according to the classification of [3]). These problems arise in determining 
the temperature field in solids in the presence of radiant, convective, or combined heat 
transfer with a medium. By linearizing the initial problem, a formula is obtained to deter- 
mine the constant value of the heat-transfer coefficient. 

A program realizing the iterative method of optimal linearization is developed for the 
MIR-2 computer. 

The method is used to calculate the heating of steel components in molten NaNO3. The 
solution obtained is no less accurate than that obtained by the small-parameter method [3], 
and more accurate than that given by the method of optimal linearization. 
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